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Diastereoselective synthesis of b-aminocyclopentene sulfonic
acid via hetero Diels–Alder reaction
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Abstract—A new cyclopentene GABA analogue was synthesized as a conformationally rigid analogue of the epilepsy drug vigaba-
trin. N-Sulfinyl dienophile Diels–Alder methodology, followed by alkaline hydrolysis of the corresponding dihydrothiazine oxide,
oxidation and deprotection of the amino group gave cis-4-aminocyclopent-2-ene-1-sulfonic acid. The corresponding N,N-dimethyl-
sulfinamide was also obtained.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

c-Aminobutyric acid (GABA) is one of the most impor-
tant inhibitory neurotransmitters in the mammalian cen-
tral nervous system (CNS).1 The enzyme that catalyzes
the degradation of GABA, GABA aminotransferase
(GABA-AT, EC 2.6.1.19), is a pyridoxal 5 0-phosphate
(PLP)-dependent enzyme.2 Inhibition of this enzyme
results in an increase in the availability of GABA, which
can have a beneficial effect on neurological disorders
including epilepsy,3 Parkinson’s disease,4 Huntington’s
chorea4b,5 and Alzheimer’s disease.6

Some years ago several cyclopentene GABA analogues
were synthesized as conformationally rigid analogues
of the epilepsy drug vigabatrin.7 As part of an ongoing
project aimed to design and to develop an inactivator of
the GABA-AT,8 we present a diastereoselective synthe-
sis of a new sulfonic amino acid: cis-4-aminocyclopent-
2-ene-1-sulfonic acid 1 (Fig. 1).
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Figure 1.
2. Results and discussion

The preparation of 1 was carried out by N-sulfinyl
dienophile Diels–Alder methodology.9 The first step is
the cycloaddition of cyclopentadiene and N-sulfinyl car-
bamate 2a–c (these compounds were obtained following
a published procedure).10 This reaction could be effected
at 0 �C in toluene to afford cycloadducts 3a–c in high
yield. Since at room temperature and/or upon attempted
chromatographic purification 3 was subject to retro
Diels–Alder reaction, it was immediately treated with
the nucleophilic agent.11

It is reported that the S–N bond in 3,6-dihydrothiazine
oxide frame can be opened with several nucleophilic
agents.12,13 In fact, compounds 3a–c smoothly reacted
with Grignard reagents or sodium hydroxide to give
compounds 6b10b or 4a–c, respectively, and, in addition,
they were very susceptible to cleavage by nitrogen nucleo-
philes, affording sulfinamides 5a,b (Scheme 1).13

In the first part of the project three different carbamates
were used, and each of them is marked by a suitable
characteristic: the most stable is the methylcarbamate,
while the tert-butylcarbamate provides an easily cleav-
able protecting group for the amine. Finally, the benz-
ylcarbamate shows intermediate reactivity with
respect to methyl and tert-butylcarbamate, so from this
point on, for the synthesis of 1, we chose to use only the
Cbz as a protecting group. Subsequently, the sulfinic
function must be oxidized. Sulfinic acids are known to
be readily oxidized, but the oxidation of our organic
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Scheme 1. Reagents and conditions: (i) PhMe, 0 �C, 20 h; (ii) NaOH, 1 equiv, THF,�60 �C, 15 min; (iii) PhMgBr 1 equiv, THF, �60 �C, 15 min; (iv)
NH(CH3)2 1 equiv, THF, �60 �C, 15 min.
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substrate by molecular oxygen, even if very clean and
devoid of by-products, required a long reaction time.
The process was accelerated by the presence of Cu2+,14

but in this case, in addition to oxidation, an undesired
rearrangement to 3,3a,4,6a-tetrahydro-cyclopentaoxa-
zol-2-one10a was observed. Therefore, we found out
that the most convenient route was the procedure of
Kresze et al.15 Thus, upon treatment of 4b with per-
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Scheme 2. Reagents and conditions: (i) HCO3H, rt, 3 days; (ii) HBr/
AcOH, rt, 1 h.

Table 1. Selected 1H NMR (200 MHz, CD3OD, 28 �C) chemical shift (d)
derivatives

H
N

H4

H5

H6

R1

H3

No. R1 R2 Chemica

H6 H5

1 H SO�
3 Naþ 2.28 2.58

4b Cbz SO�
2 Naþ 1.56 2.28

4c t-Boc SO�
2 Naþ 1.71 2.64

5a MeOCO SONMe2 2.18 1.63
5b Cbz SONMe2 2.05 1.61
7b Cbz SO�

3 Naþ 1.71 2.64
10 H CO2H 2.08 2.63

Other signals d: (1) 6.13 (m, 1H, H3), 6.32 (m, 1H, H2); (4b) 5.08 (s, 2H, O
(CH3)C), 5.91 (m, 1H, H3), 6.14 (m, 1H, H2); (5a) 2.70 (s, 6H, N(CH3)2), 3.65
2H, PhCH2O), 5.92 (m, 2H, H2–H3), 7.3 (m, 5H, C6H5); (7b) 5.0 (s, 2H, Ph
formic acid, allylic sulfonic acid 7 was easily obtained.
Finally, the selective procedure for the cleavage of the
carbamate moiety employed the use of dry hydrogen
bromide in glacial acetic acid16 (Scheme 2).17 This reac-
tion represents a nonhydrolytic cleavage and not a
reduction process. Compound 1 (as a racemic mixture)
was obtained in good yield after ion exchange chroma-
tography. It is to be noted that, at least in strictly anhy-
and spin–spin coupling constants (J) values of amino cyclopentene

R2

H1

H2

l shift (ppm) Spin–spin coupling constants
(Hz)

H1 H4 Jgem Jtrans Jcis

4.06 4.30 16.1 8.0 0.9
3.12 4.45 14.6 8.7 2.8
3.94 4.74 14.0 8.4 4.3
3.81 4.78 14.9 3.9 2.5
4.00 4.70 16.0 5.2 4.4
3.90 4.74 14.0 8.4 4.3
3.72 4.38 15.1 8.7 4.3

CH2Ph), 5.82 (br s, 2H, H2–H3), 7.28 (s, 5H, C6H5); (4c) 1.53 (s, 9H,
(s, 3H, OCH3), 5.91 (m, 2H, H2–H3); (5b) 2.75 (s, 6H, N(CH3)2), 5.21 (s,
CH2O), 5.8 (br s, 2H, H2–H3), 7.3 (br s, 5H, C6H5).
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Scheme 3. Reagents and conditions: (i) CH3I, rt, CH3OH; (ii) HBr/
AcOH, rt, 1 h.
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drous conditions, addition reaction on the double bond
was not observed.

Following this synthetic protocol a variety of N- and S-
substituted derivatives can be obtained. As an example,
the methyl sulfone 918 was obtained upon treatment of
4b with iodomethane to afford 8, followed by the usual
carbamate cleavage by dry hydrogen bromide in glacial
acetic acid16 (Scheme 3). It is noteworthy that further
molecular diversity could be obtained on the basis of
the 2,3-double bond reactivity.

The stereochemistry of Diels–Alder products is largely
predictable on the basis of the cycloaddition mechanism.
Furthermore, the structures of all new compounds were
unequivocally confirmed by mono- and two-dimen-
sional 1H and 13C NMR spectra.19 In particular, the
cis-stereochemistry of 1- and 4-hydrogens in compound
1 was confirmed by NOESY experiment. In addition,
the coupling constants of compounds 1, 4b,c, 5a,b, 7b
are in agreement with the corresponding data for cis-4-
amino-2-cyclopentene-1-carboxylic acid 10, prepared
according to Allan and Fong.20 The small differences
found can be attributed to steric effects of the substitu-
ents on the nitrogen and sulfur atoms affecting the cyclo-
pentene conformation (Table 1).
3. Conclusion

In summary, to our knowledge, this work describes the
first example of synthesis of sulfonic amino acid using
hetero Diels–Alder reaction followed by nucleophilic
cleavage as the key step. This strategy is suitable for syn-
thesizing polyfunctionalized systems. We are currently
extending this approach to other cyclic systems. Investi-
gation on biological activity is also in progress.
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